Informatics in the light of some Leibniz’s works

Laurent Bloch 1b@laurentbloch.org

24th of May 2016

1 Informatics, not computer science

The science we are going to talk about, which encompasses algorithms, pro-
gramming, operating systems, computer networks, databases and some others,
is usually named in English “Computer Science”, but this wording seems to
some people (including myself) quite inappropriate, because it is indeed a sci-
ence, but not about computers.

The German engineer and professor Karl Steinbuch coined the word ,,In-
formatik® in 1957, the French engineer Philippe Dreyfus created the term
« informatique » in 1962, both of them translated in English by “Informatics”,
which, in my humble opinion, is better than “Computer Science”. This word
collapses together “information” and “automatics”; information is what gives
to something a form from the inside of this thing; automatics is what makes
this process automatic; the result is an automaton. The thing to which a form
is given here is an idea, we call it an algorithm. We call the form a program,
it is a text.

2 Automates

As far as we can look backwards in time, humans have tried to build automates
to avoid working. The trap of prehistoric man, whose door opens under or
whose harrow falls on the prey, Vaucanson’s duck which was floating and
swimming were automates.

These particular automates, and some others of the same kind, do always
the same thing.

The kind of automates we are speaking about with Informatics are different,
they have a language inside themselves, and they are therefore universal, they
can do everything an automate can do, as proved by MM. Alan Turing and
Alonzo Church (not everything can be done by an automate). These universal
automates consist of a material object, a machine, a computer, and of an
invisible, intangible thing, the program.

The program, as we have told, is a text. Some programs define also a
language, in which another program may be expressed. It is the way data
processing machines are universal, and programmable.



Gottfried Wilhelm Leibniz was a forerunner of these ideas, in several ways.
The scientists who created the ideas of Informatics (Gottlob Frege, Alonzo
Church, Alan Turing) were unaware of the previous works of their forerunner
Leibniz. The scientist who invented the modern computer (another poorly
suitable word for this device, and the French « ordinateur » is hardly better),
John von Neumann, was aware of the works of Church and Turing in the field
of Logic, but the link he saw between these works and the design of what we
call today “von Neumann’s architecture” for the computer was very weak, if
only present.

3 How was Leibniz a forerunner of Informatics

« He built a four-operations calculator (1672-1694), with a bug, like every
true computer system.

e He had a foresight of how binary arithmetic could be suitable for auto-
matic calculation (1703).

o His characteristica universalis, designed to be the language of a scientia
universalis, didn’t achieve that result, but achieved another, showing
that computing could apply not only to numbers, but also to logical
propositions, an idea developed later, independently from Leibniz, by
Augustus de Morgan, George Boole, Gottlob Frege and their followers.

Moreover, the philosopher Baptiste Méles established a correspondence be-
tween Object oriented programming (OOP) style and the Leibnizian concept
of Monad.

These deep insights of Leibniz, one of the most influential (even if often
forgotten) thinkers of the millennium, towards the world of Informatics, are not
just coincidences, but the outward signs of an often (not so) invisible current
of thought, flowing from Aristotle to Kurt Gédel and Alan Turing, with the
aim of substituting computing for reasoning everywhere it is possible. Alan
Turing’s major work was to determine a way of computing where it is possible
(and where it isn’t).

4 Leibniz’s pinwheel calculator

Leibniz got the idea of making a calculating machine in 1672 in Paris, and later
he learned about Blaise Pascal’s machine! when he read Pascal’s Pensées [13]°.

IPascal began to work on his calculator in 1642, but the first mechanical calculator was
designed by Wilhelm Schickard. Schickard’s machine was destroyed by fire, but we know
it by two letters to Johannes Kepler from 1623 and 1624.

2« La machine arithmétique fait des effets qui approchent plus de la pensée que tout ce
que font les animaux ; mais elle ne fait rien qui puisse faire dire qu’elle a de la volonté,
comme les animaux. » (“The arithmetic machine has effects that are closer to thought
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Then he became eager to surpass Pascal’s machine, which was only capable
of addition and subtraction, with the design of a machine able to multiply
and to divide. He presented this design to the Royal Society of London on
1 February 1673, received much encouragement and was therefore admitted as
a member.

His first preliminary brass machine was built between 1674 and 1685. His
so-called older machine was built between 1686 and 1694. The ‘younger ma-
chine’, the surviving machine, was built from 1690 to 1720 (according to Jan-
Willem Liebezeit [11]).

It is worthwhile to note that being able to compute the four basic arithmetic
operations is equivalent to be able to execute any given numerical computation.

For his design, Leibniz invented a mechanism to keep the operation’s multi-
plicand “in memory”: the “stepped reckoner”, based on a gearwork now called
“Leibniz wheel”. The ability to keep data in memory is essential to modern
computing, technically as well as theoretically. Leibniz’s machine was the first
device ever to implement that capacity.

There was a bug in Leibniz’s design: a flaw in the carry mechanism pre-
vented the machine from accurate computations with numbers of two or three
digits. And, like Pascal before him, and like Babbage after him, Leibniz had
difficulty obtaining the precision gearwork needed by his machine to work re-
liably.

5 Binary arithmetic

Leibniz got the idea of binary arithmetic by corresponding with, and reading
works by, European Christian missionaries posted in China, especially the
French Jesuit Joachim Bouvet, who was a civil servant for the Kangxi Emperor,
and who sent Leibniz a diagram of the 64 Fuxi’s hexagrams. Fuxi (Fohy in
Leibniz’s text Explication de ['arithmétique binaire [3], written in French for
the Académie Royale des Sciences, the translation in English is here [7]) is a
character of Chinese mythology, creator of the Fight Trigrams (Hanyu pinyin:
bagua) used in daoist cosmology to represent the fundamental principles of
reality, seen as a range of eight interrelated concepts. Each consists of three
lines, each line either “broken” or “unbroken”, respectively representing yin or
yang. Due to their tripartite structure, they are often referred to as “trigrams”
in English.

If for ancient Chinese people the two kinds of lines were the symbols of
yin and yang, they may be also viewed as the two digits of binary arithmetic.
Three lines of two kinds may give eight combinations, for the numbers from 0
to 7 (23 —1). Fuxi’s hexagrams may, with six binary digits, may be viewed as
representing the numbers from 0 to 63 (2°-1).

than what all animals do, but it does not do anything that could make some say it has a
will, as animals have”)



Leibniz was neither the first to know Fuxi’s hexagrams, nor the first to know
binary arithmetic: Thomas Harriot (1560-1621) left a table of binary values,
and Juan Caramuel y Lobkowitz (1606-1682) had studied numeral systems
with radices (bases) different from 10. But he was the first one to see a
connection between them.

Above all, Leibniz understood that binary arithmetic made calculations
much more simple than with other bases: “...instead of the progression of tens,
I have for many years used the simplest progression of all, which proceeds by
twos, having found that it is useful for the perfection of the science of numbers.
Thus I use no other characters in it bar 0 and 1, and when reaching two, I
start again...
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Establishing this expression of numbers enables us to very easily make all
sorts of operations.
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And all these operations are so easy that there would never be any need
to guess or try out anything, as has to be done in ordinary division. There
would no longer be any need to learn anything by heart, as has to be done in
ordinary reckoning, where one has to know, for example, that 6 and 7 taken
together make 13, and that 5 multiplied by 3 gives 15, in accordance with the
Table of one times one is one, which is called Pythagorean.” (Translation by
Lloyd Strickland)?

With the binary numeral system, the multiplication becomes extremely
simple, because the only multiplication table is the table of one time one. But
moreover the digits 0 and 1 may represent either their numerical values, or the
values “false” and “true” of the algebraic logic invented by George Boole in
the middle of XIXth century [2].

Boole’s algebra provides a formalism for propositional logic. For instance,
let P and Q be two propositions, “P AND Q7” is true if both P and Q are true,
and false otherwise. “P OR Q7 is true if P, or Q, or both of them are true.
Augustus de Morgan showed that “not (P and Q)” is the same as “(not P) or
(not Q)” also, “not (P or Q)” is the same as “(not P) and (not Q)”. Boolean
formalism (not the original Boole’s text) uses the following symbols:

« -~ is the negation logic operator (NOT),
A is the conjunction logic operator (AND),
« V is the disjunction logic operator (OR),

e« < is a metalogical symbol meaning “can be replaced in a logical proof
with”.

3« Et toutes ces opérations sont si aisées, qu’on n’a jamais besoin de rien essayer ni deviner,
comme il faut faire dans la division ordinaire. On n’a point besoin non plus de rien
apprendre par ceeur ici, comme il faut faire dans le calcul ordinaire, ou il faut savoir, par
exemple, que 6 et 7 pris ensemble font 13, et que 5 multiplié par 3 donne 15, suivant la
Table d’une fois un est un, qu’on appelle Pythagorique. »



With these symbols, de Morgan’s duality may be written as follows:

“(PAQ) < (P)V (~Q) (1)
(PVvQ) <= (P)A(mQ) (2)

Therefore it is possible to implement calculations with numbers by logical
operations of Boolean algebra. These operations are attractive because they
are particularly simple, and easy to implement with electronic circuits. All the
modern computers are built with only one operation, the logical “Not And”
(NAND), noted 1:

+V
xty < (xAy) R

XAy may be written xy,

XV y may be written x+ y and

“(x A y) simply Xy

(figure by courtesy of Emmanuel Lazard)

6 What are computers?

Modern computers are indeed very simple devices, more simpler than me-
chanical machines designed by Schickard, Pascal, Leibniz or Babbage. As
mentioned above, they are all made of NAND circuits (the usual wording is
“NAND gate”). They consist essentially of a memory, which is a storage to
store values coded by binary digits, an arithmetic and logical unit (ALU),
which joins together logical circuits to implement arithmetic and logical oper-
ations, and a control unit with control operations (technically similar to logical
and arithmetic operations) to trigger the execution of operations on the right
order, at the right time.

It is maybe quite difficult to understand because it is too simple: this
simplicity is indeed incredible. Operations are physical devices, made up of
electronic circuits, which have effects on data stored in memory. The sequence
of operations is described by the text of a program (it is the complicated
part of the whole thing); the sentences of the text are called instructions; an
instruction corresponds to an operation of the ALU or of the control unit.
Thanks to John von Neumann, the text of the program is data like other data,
stored in memory too. The circuits of the control unit “read” the text of the
program and trigger the execution of the operations, one by one (disregarding
some technical details not relevant here).

The effects of control operations are of a few sorts:

o to modify the sequence of operations by giving the place of the next
instruction to be read;
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e to choose the next operation, depending of the result of the previous one;
o to repeat a sequence of operations;

e to load data from memory into special little storage inside the ALU, in
order to have faster execution of some operations; these storage places
in the ALU are called registers; registers are analogous to the “stepped
reckoner” invented by Leibniz and mentioned above, they are useful to
keep an operand for the time of the operation it is submitted to;

e to store data from registers into memory.
The effects of arithmetic and logic operations are of a few sorts:

e to move data around in memory;

to copy data from one place to another in memory;

to modify data according to boolean operations;

e to combine data according to boolean operations; the result of such a
combination may be an arithmetical operation.

As all data are numerically encoded, all operations on data, numerical,
textual, graphic or whatever, are arithmetic (i.e. logical) operations.

7 Putting all the pieces together

The computing system we have described so far is set up from many pieces,
all of them are quite simple, but to work efficiently with it we need to put
them together in a coherent way. The way to achieve coherence is language,
and here too Leibniz had the right ideas. Unfortunately, almost everybody
was unaware of them, and they had to be reinvented by people like Gottlob
Frege, Alonzo Church, Alan Turing and some others. And also, the authors of
the first computer languages like John Backus were originally unaware of the
works of Frege, Church and Turing, and they had to be rediscovered later.

In fact, the need for true languages was not evident in the first place. When
John Backus invented Fortran, he was thinking of mathematical formulas.
Later, with the Algol project, the idea of language came up.

Behind the computer languages is the idea of formal system (a formal
system consists of a finite number of rules which operate on countable sets).
Before the modern formal systems, Leibniz had the idea of a characteristica
universalis, a language for a scientia universalis. Leibniz hasn’t written a
formal treatise upon this project, his ideas about it are spread out in many
unpublished papers and letters, and Louis Couturat [5] and Bertrand Russell
[14] deserve the credit for putting them in light. I'm borrowing from Renée
Bouveresse [1] her description of Leibniz’s program for an universal science; it
consists of two parts: an universal characteristic, or notation system, to write



down any information item without ambiguity and to help for communication
between scientists, and a calculus ratiocinator, or formal method for reasoning,
because calculus is nothing else as an operation by means of characters, which
is relevant not only for quantities, but also for any sort of reasoning.

These ideas of logical calculus are exactly the ideas inherent to computer
programming.

8 Communication between objects

“Object-oriented programming (OOP) is a programming paradigm based on
the concept of ‘objects’, which may contain data, in the form of fields, often
known as attributes; and code, in the form of procedures, often known as
methods” (Wikipedia).

This style of programming, as opposed to procedural and functional styles,
avoids sharing data between procedures or passing arguments between them.
Procedures and data are encapsulated into so-named objects which communi-
cate between each other by message exchange. The messages contain data and
indication of the methods that the emitting object asks the receiving object to
apply to the data.

According to this model of program, an object may receive messages, which
modify its status, and send messages, which tend to modify other objects, i.e.
the world around”.

Baptiste Méles noticed [12] that an analogy could be built between this
behaviour of objects and some properties of Leibniz’s monads: “The qualities of
a monad must be its perceptions; a perception is a representation in something
simple of something else that is composite. And a monad’s actions must be its
appetitions, which are its tendencies to go from being in one state to being in
another, i.e. to move from one perception to another; these tendencies are the
sources of all the changes it undergoes.” (Translation by Jonathan Benett)®.

In his paper Baptiste Méles gives to us some examples of objects in Java.
He notices that the programmer, in this world of classes (types) of objects,
occupies the place of God, because he knows (he’s supposed to know...) every-
thing about all classes.

OQOP gives us objects able to communicate between each other: this prop-
erty could help to elaborate models around the notion of biological function,

“In the beginning, OOP gave rise to great enthusiasm, it was supposed to give computer
programming the power to represent the real world. It was of course an illusion, computer
programs artifacts can only represent, manage and process information, and OOP is a
particular way to do that. But OOP may be a programming style well suitable to build
abstract models of some real world’s objects.

5¢ Une monade en elle-méme, et dans le moment, ne saurait étre discernée d’une autre
que par les qualités et actions internes, lesquelles ne peuvent étre autre chose que ses
perceptions (c’est-a-dire les représentations du composé, ou de ce qui est dehors dans le
simple), et ses appétitions (c’est-a-dire ses tendances d’une perception a I'autre) qui sont
les principes du changement. »



REFERENCES 9

which is the reason some object or process occurred in a system that evolved
through a process of selection or natural selection.

Conclusion

Leibniz’s work is immense, he approached numerous domains with thoughts
well in advance on his time, and some of them are still to be discovered and
understood. It is a pity that Voltaire, a by far lesser philosopher, could have
mocked him with cruelty, and moreover after his death, in his novel Candide,
where he is painted as the philosopher Pangloss, whose mantra is “all is for
the best” in the “best of all possible worlds”. If, as stated by Roland Barthes,
Voltaire belongs to the Academy of the overrated, it is not the case for Leibniz.

It is still to be well established that the science of Informatics is the daugh-
ter of Logic, probably more than of Mathematic. According to the German
logician Heinrich Scholz, in the science of Logic there are two periods: from
Aristotle to Leibniz, and from Leibniz until now, because Leibniz introduced
new ways of logical calculus. Almost nobody was aware of Leibniz’s works on
Logic, and it is only in the second half of the XIXth century, when similar
ideas arose (de Morgan, Boole, Frege...), that they were discovered.

In any case, Leibniz’s writings on Logic and Calculus would be of great
help for informaticians to better understand their science.
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